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Abstract— The increasing awareness of public health issues
has highlighted the need for effective disinfection of crowded
indoor public areas, leading to the development of automated
disinfection robots. However, most of the existing robots spray
disinfectant in all areas, and they are still immature to navigate
in densely populated environments. Hence, in this paper, we
design a new disinfection robotic system consisting of a mobile
platform, an RGB-D camera, and a robotic arm with a spray
disinfection device. To address the above challenges, we propose
a vision-based method for accurately detecting high-touch areas
in the surroundings, enabling the disinfection robot to achieve
superior disinfection efficiency. In addition, we propose a
dynamic pedestrian avoidance method, namely Socially Aware
APF (SA-APF), which can predict the movement trend of
pedestrians and plan the path in real-time. Both simulated
and real-world experiments are conducted to demonstrate
the effectiveness of our disinfection robot system, especially
highlighting the ability to detect high-touch areas and navigate
in the environment while avoiding dynamic pedestrians.

I. INTRODUCTION

The emergence of the COVID-19 pandemic coupled with
an escalation in public health conscientiousness, has un-
derscored the urgent necessity of proficiently disinfecting
densely populated environments to mitigate the onset of
infectious diseases [1]. Public interiors, notably hospitals,
hospitality establishments, and civic hubs, are particularly
vulnerable to the dispersal of viral contagions, compounded
by the confluence of heavy pedestrian traffic and inherent
ventilation impediments. Although conventional manual dis-
infection methods are prevalent, their protracted time re-
quirements and limited efficacy persist as notable drawbacks
[2]. Nonetheless, such exposure and potential transmission
may imperil the health and safety of the well-being of the
sanitation workforce.

In the wake of technological advancements, a slew of
disinfection robots have been engendered and deployed [3]–
[7], showing remarkable efficacy under their elevated levels
of robotic automation. Nonetheless, it merits attention that
these robots indiscriminately discharge antiseptics or directly
activate ultraviolet light, which is profligate and inefficient.
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Fig. 1. Disinfection robot system overview. (a) the overall composition of
the system, (b) the robot in a real scenario, (c) an illustration of the function
modules.

Moreover, these robots often perceive pedestrians as immo-
bile hindrances, neglecting the intricate dynamics of human
mobility.

To address the aforementioned challenges, we design an
autonomous disinfection robot that can navigate in complex
indoor environments and especially focus on disinfecting
high-touch areas. As shown in Fig. 1, our system is built
on a mobile platform equipped with 2D LiDAR sensors
and RGB-D cameras. The robot comprises four functional
modules: visual recognition, navigation, robot control, and
sterilization. These modules interact with each other via the
Robot Operation System (ROS).

Specifically, the vision recognition module detects high-
touch objects such as doorknobs and switches from an
embedded RGB-D camera. By fusing the depth information,
the relative positions and orientations between the robot and
the target can be derived. Furthermore, the vision recognition
module exhibits the capacity to identify pedestrians in the
robot’s vicinity, thereby providing spatial information about
dynamic pedestrians with respect to the robot’s position [8].

It is paramount to guarantee the real-time execution of
detection algorithms. The Nvidia Jetson platform stands
out prominently owing to its capability to expedite deep-
learning algorithms while maintaining a low power budget
and high efficiency with TensorRT [9]. Its compact form
factor, which allows seamless integration within a robot, is
an added boon. YOLO [10], a distinguished one-stage object
detection framework noted for its harmony of speed and
precision, which is supported by NVIDIA’s TensorRT SDK,
can significantly enhance detection efficiency thus making

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 3595

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
10

83
6

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 07,2024 at 23:12:27 UTC from IEEE Xplore.  Restrictions apply. 



it an apt choice for deployment on this edge computing
platform. Subsequently, we employ the YOLO as the back-
bone network for object detection, which exhibits excellent
deployability on the embedded platform, enabling real-time
multi-object detection while upholding satisfactory accuracy.

The navigation module guarantees the robot reaches its
destination quickly and safely. Rapidly-Exploring Random
Trees (RRT) [11] and its variants [12] [13] are a kind of
global path planner that effectively avoids static obstacles
and tries to find the shortest path. However, its disadvantage
lies in being computationally complex and unable to achieve
real-time performance. Therefore we use it for pre-travel path
planning to ensure a high-quality global path. Since the robot
is likely to encounter temporary obstacles when traveling
that do not exist on the map, a local path planner with low
compute complexity is needed for real-time path correction.
Although the Artificial Potential Field (APF) [14] algorithm
meets our needs, it is designed for static obstacles, not
considering the social attributes of robots. Without sufficient
prediction of pedestrian mobility, the APF local planner will
lead to unnecessary deceleration, stagnation, or collision with
pedestrians. Thus, we propose a novel local planner based on
the APF algorithm, namely Socially Aware APF (SA-APF).

In summary, the main contribution of this paper is three-
fold:

• We design an automated disinfection robot system,
which has high disinfection efficiency and robust nav-
igation skills and is thus more suitable for crowded
scenarios with high disinfection needs such as hospitals.

• A dedicated deep model for high-touch area detection
is introduced to detect the target objects with high
disinfection needs (such as door handles and switches).

• Deep learning-based pedestrian detection and improved
dynamic pedestrian avoidance are combined to predict
the movement trend of pedestrians, to achieve real-time
path planning and dynamic obstacle avoidance.

II. SYSTEM OVERVIEW

A. Hardware System

The disinfection robot is built upon a mobile platform
consisting of differential drive wheels, with an overall vol-
ume of 850mm×400mm×1130mm. It comprises a 6DOF
robotic arm, furnished with a dual-liquid disinfection setup,
alongside four UV disinfection lamps, RGB-D cameras,
and 2D LiDAR detectors. The rear of the robot features
wireless charging modules and the front of the robot has
a touchscreen.

B. Functional Modules

Our disinfection robot mainly consists of four functional
modules. (1) Robot Control: the various modules of the robot
can work together through the ROS system. An industrial
computer located at the bottom of the robot acts as the host,
which is responsible for controlling the velocity of the robot
chassis. (2) Vision Recognition: this module demonstrates
swift identification of high-touch objects and pedestrians,

furnishing the essential information for other modules; per-
forms real-time identification and information-return tasks
by an RGB-D camera and a combination of algorithms;
and efficiently provides distance and angle information for
other modules to collaborate with, by deploying on the
edge computer and establishing ROS communication with
the host computer. (3) Navigation and Obstacle Avoidance:
this module can perform path planning tasks under densely
populated environments; build the map of disinfection space
and locate the robot itself by LiDAR sensors and SLAM
algorithm; plan a global path before traveling, avoiding
collisions with static obstacles and trying to find the shortest
path by RRT* algorithm; and flexibly correct its path in
real-time to prevent collisions with pedestrians by SA-APF
algorithm. This module deploys algorithms on the host
computer. It receives pedestrian information from the vision
recognition module and publishes velocity information to
the robot control module. (4) Disinfection: the robot has
two sets of disinfection functions. The first is to use the
irradiation of ultraviolet lamps, which has the advantages of
high efficiency and wide disinfection range. The second is
to use the disinfectant spray, which has the advantage of
flexibility. This module works after the robot successfully
navigates to the high-touch area.

III. VISION RECOGNITION

To accomplish effective path planning and precise disin-
fection, it is critical for the vision recognition module to
discern the high-touch objects and relay distance data to the
robot. In pursuit of this objective, we select YOLOv8s, which
has an equilibrium between speed and precision, effectively
supported by the Nvidia TensorRT SDK. Subsequently, we
implement an attention module along with a lightweight
convolution module to augment performance further. Addi-
tionally, depth information procured from an RGB-D camera
confers three-dimensional spatial hints of the identified ob-
jects. Coordinated with navigation and disinfection modules,
the robot is proficient in executing pedestrian avoidance and
disinfection tasks with efficacy.

A. Overview of YOLOv8s

The YOLO framework has achieved remarkable success
in the field of computer vision. YOLOv8s [15] is a progres-
sive, state-of-art model supported by Ultralytics. YOLOv8s
encompasses five basic models that diverge in terms of
model depth and parameters, yet they all adhere to the
same fundamental framework. As model size escalates, so
does its discernment precision, although this may incur a
longer inference duration on the Nvidia Xavier NX edge
computing platform due to an overabundance of parameters.
Our examination of all basic models reveals that although
YOLOv8s falls slightly short of its counterparts in terms
of performance accuracy, it demonstrates superior inference
speed after training. As a result, we have chosen this model
for its commendable balance in recognition performance.
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B. Object Detection Framework
To attain rapid computation and lightweight deployment

while improving accuracy, we incorporate the Convolutional
Block Attention Module (CBAM) [16] and C3Ghost Module
into the backbone and the head of the YOLOv8s. The
C3Ghost module comprises GhostNet [17] as its funda-
mental building block. GhostNet utilizes a limited number
of convolutional kernels to extract features from input.
Thereafter, these features are processed by linear layers,
rather than complex convolutional layers. The final feature
maps are generated through concatenation. The diagram
of the C3Ghost module is shown in Fig. 2. CBAM is a
lightweight convolutional attention module that includes two
sub-modules, the Channel Attention Module (CAM) and the
Spatial Attention Module (SAM), which conduct channel and
spatial attention computation respectively.

Fig. 2. The architecture of the C3Ghost module.(1) GhostConv obtains
the feature map by concatenating the Conv layer output and the output
after Conv and DWConv [18];(2) GhostBottleneck is formed by using two
GhostConvs in series, using jump connection pathways;(3) C3Ghost module
output consists of concatenating GhostBottlenek and Conv layer outputs

The CAM entails performing average pooling and maxi-
mum pooling operations on the input features. Subsequently,
the average-pooled and maximum-pooled features are com-
bined in a MultiLayer Perceptron (MLP) architecture to yield
the final channel attention feature mapThe computation of
the channel attention feature map is given by the equation:

MC(F ) = σ(MLP (AvgPool(F ) +MLP (MaxPool(F )))

= σ
(
W1

(
W0

(
F c

avg

))
+W1 (W0 (F

c
max))

)
(1)

where Mc(F ) is channel attention features, and F c
avg, F

c
max

represent the average pooling and max pooling features.
To calculate the spatial attention, the module applies

average pooling and maximum pooling operations along
the channel dimensions. Subsequently, the resulting feature
maps are utilized to perform convolution on the concatenated
feature maps, resulting in the generation of the ultimate
spatial attention feature maps. The computation of the spatial
attention feature map is expressed as follow:

Ms(F ) = = σ
(
f7×7

(
F s

avg ;F
s
max

)))
(2)

where Ms(F ) stands for channel attention features and f7×7

is a convolutional kernel of size 7x7.
The CBAM module operates on the feature map by

assigning an attention weight to each channel and spatial
location. Fig. 3 is the CBAM structure diagram and Fig. 4
shows the improved YOLOv8s framework diagram.

Fig. 3. The structure of the CBAM. It contains two main components,
channel attention and spatial attention. Both of the two sub-modules use
average-pooling and max-pooling outputs with a shared network [16].

Fig. 4. Structure of the improved YOLOv8s method. Compared with the
original YOLOv8s method, the method has two structural improvements.
(1) The G3Ghost module and the attention module are introduced into the
backbone layer; (2) the attention module is added to the feature fusion layer.

IV. NAVIGATION AND PEDESTRIAN AVOIDANCE

To perform disinfection tasks in a wide indoor area, the
robot needs to build maps of disinfection scenarios, and then
with the given disinfection sites on a map, the robot gets
to them one by one. Particularly, when faced with human
beings who are standing or walking, the robot should escape
them flexibly in a social manner, instead of just stopping
and waiting for pedestrians to pass. To tackle this problem,
a two-wheel differential mobile platform, several LiDAR
sensors, and RGBD cameras are used together. Additionally,
we integrate several existing algorithms and propose SA-APF
as the local path planner based on traditional APF.

A. Mapping and Repositioning

Two 2D LiDAR sensors are fixed in front and to the side
of the robot. Based on the SLAM algorithm, the 2D map of
the indoor scenarios can be acquired. Every time the robot
moves in the same scenario, its LiDAR sensors and inertial
measurement unit can work together to re-localize the robot
on the existing map.

B. Global Planner: RRT*

Before the robot starts to move from one disinfection site
to another, a global path plan is made in advance. The global
planner helps to shorten planning time cost and improve path
quality during the robot’s actual moving.

We choose RRT* [12] as the global planner. The RRT*
algorithm is an extension of the RRT [11], which can
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generate a collision-free path from the start to the goal.
The RRT algorithm works in the following processes. (1)
Randomly sample a node Xrand. (2) Find the nearest node
from Xrand in the existing node list as Xnear. (3) Connect
Xrand and Xnear as the direction of tree growth. Xnew is
decided based on a fixed step length. If the line segment
between Xnew and Xnear is collision-free, we consider this
steer as successful. (4) For the nodes within a specified radius
of Xnew, if the cost between the node and Xnew is lower than
that between Xnew and its parent node and collision-free,
rewrite the node as the new parent node thus the parent node
is updated. (5) Iterate the process above until the distance
between Xnew and the goal is less than the fixed step length
and free of collision.

Finally, we get a tree consisting of a series of nodes, which
forms the path we need. Compared to RRT, RRT* adds a
rewiring operation every time after finding Xnew. For the
nodes within a specified radius of Xnew, it updates the parent
node if the new path is better than the original path. Hence,
RRT* can generate a shorter path than RRT in the case of
ensuring safety.

C. Local Planner: SA-APF

To deal with the dynamic obstacles that may appear in
the real scene, we propose a novel local planner based on
the APF [14] algorithm, namely Socially Aware APF(SA-
APF). APF abstracts a scene to an artificial potential field,
where the obstacles generate a repulsive field, and the targets
generate an attractive field. In addition, the robot’s velocity
is controlled by the force it receives in the potential field.

Here is a brief description of traditional APF. The attrac-
tive force is defined by :

Fatt(q) = −ηρ (q, qg) r(q, qg) (3)

where q, qg represent the positions of the robot and the
goal. η is the proportional gain coefficient of attractive
force. ρ (q, qg) represents the Euclidean distance between the
robot’s position q and the goal point’s position qg .r(q, qg) is
the unit vector from goal to robot.

Similarly, the repulsive force is given by:

Frep(q) =

{
k
(

1
ρ(q,q0)

− 1
ρ0

)
r(q,q0)
ρ2(q,q0)

0 ≤ ρ < ρ0

0 ρ ≥ ρ0
(4)

where q, q0 represent the positions of the robot and the
obstacle. k is the proportional gain coefficient of repulsion.
ρ (q, q0) is the Euclidean distance between the robot’s po-
sition q and the obstacle’s position q0. ρ0 is the minimum
safety distance between the robot and the obstacle, which is
the sum of the obstacle radius and robot radius. r(q, q0) is
the unit vector from obstacle to the robot.

The combined force is the superposition of the attractive
force and the repulsive force. For attractive and repulsive
forces to work well together, the ratio of proportional gain
coefficients η and k should be carefully adjusted to maintain
balance. Based on the basic obstacle avoidance APF algo-
rithm, we further consider pedestrians as a special kind of

Fig. 5. Repulsion distribution comparison between traditional APF and
our SA-APF. We redefine the central point of the potential field and our
potential field shape is elliptical while that of traditional APF is circular.

mobile obstacle. Thus, we design the SA-APF algorithm by
taking obstacles’ mobility into account and hence is more
suitable for social conditions between humans and robots.

Firstly, we predict the velocity state of a pedestrian in
order to get mobility information. An RGBD camera fixed
on the front of the robot detects pedestrians and locates them
in the camera coordinate. So their pose T human including
position and moving direction in the world coordinate system
can be obtained in every camera frame from

T human = T human
camera ∗ T camera

robot ∗ T robot
map (5)

Then, we observe real-time velocity based on the pedestrian’s
poses from the two neighboring frames.

Ṽhuman,k =
T human
k − T human

k−1

σ
(6)

where σ is the sampling interval between frames. Next We
estimate the real-time velocity state by calibrating the real-
time observation with the last pedestrian velocity state.

Vhuman,k = α ∗ Vhuman,k−1 + (1− α) ∗ Ṽhuman,k (7)

We next modify the repulsive potential field and repulsion
model mentioned above, making it more suitable for mobile
obstacles. As is shown in Fig. 5, traditional APF builds a
round repulsive potential field, which means a static obstacle
gives radial repulsion to the robot around it, whose value is
solely dependent on distance in between. By contrast, our
SA-APF expects a moving obstacle to give larger repulsion
where there is a higher likelihood of obstructing its moving.
So, we develop an elliptical potential field with an offset
center point. In the elliptical potential field, the relationship
between long and short axis lengths is defined as follows

lshortAxis = β ∗ llongAxis (8)

In addition, the long axis is parallel to the velocity
direction of the robot, so the greatest collision avoidance
weight is given in this direction. The sum of lshortAxis and
llongAxis should be twice as large as the diameter of the
original round potential field. The center of the potential field
is also modified as

Tcenter = Thuman + Vhuman,k ∗ predictT ime (9)

The offset of the center point gives the front of the pedestrian
more weight in collision avoidance than the rear. In this

3598

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 07,2024 at 23:12:27 UTC from IEEE Xplore.  Restrictions apply. 



modification, the repulsion function(4) still works. The only
change is the definition of ρ0 as is shown in Fig. 5(c).

D. Motion Control

Every time the robot starts to move from one disinfection
site to another, it makes a global RRT* plan before moving.
To make the path more smooth, we use bezier interpolation
on the original global path. After that, the robot travels with
the SA-APF local planner working. In detail, the points that
are on a global path and have not been achieved by the robot
provide an attractive force. In addition, all the temporary
obstacles, including pedestrians and so on, provide repulsive
force. The velocity of the robot is proportional to its received
force in the potential field.

V. EXPERIMENT

A. Implementation Details of Vision Recognition

The training data comprises two sources: a pedestrian
dataset from an open-source dataset [19], and an indoor high-
touch object dataset developed by our team. The new dataset
includes four categories: pedestrians, doorknobs, switches,
buttons with a total of 1688 images.These objects are subject
to frequent manual contact, thereby presenting an elevated
risk of contagion. We enhanced the data diversity by uti-
lizing data augmentation techniques such as random angle
rotations, noise addition, contrast elevation, and cropping to
increase the resilience of the model. For training, the dataset
was randomly partitioned into a training set of 1519 images
and a test set of 169 images, with a ratio of 9:1.

The vision recognition experiments were conducted on
the Ubuntu 18.04 operating system, utilizing an Intel(R)
Xeon Processor CPU and 56GB of RAM. The PyTorch 1.8.1
framework was employed for training, leveraging an Nvidia
Tesla T4 graphics card with 16GB of video memory. The
Python version used was 3.8.10, and the CUDA version
employed was 12.0. The model training process involved
320 epochs, with a batch size of 32. The optimizer is Adam
weight decay regularization (AdamW) [20]. The momentum
factor is 0.937, the weight decay value is 0.0005, and both
the initial momentum and IOU thresholds are set to 0.01.

We employed our algorithm on the Nvidia Xavier NX with
jetson SDK 4.6.1, in conjunction with TensorRT 8.2 and the
torch 1.8 environment. During the conversion of the PyTorch
model to TensorRT model, we utilized the ’fp=16’ parameter
to achieve better acceleration.

B. Comparison Methods and Ablation Study

To verify the effectiveness of our framework, experiments
are conducted to compare with other object detection algo-
rithms, and ablation experiments are conducted for CBAM
and C3Ghost modules. The above experiments are each
conducted on the same dataset as mentioned above for model
training, and the experimental conditions are kept consistent.

To verify the effectiveness of our proposed SA-APF al-
gorithm, we compare it with the traditional APF algorithm.
First, we build a map of disinfection space and use RRT*
global planner to generate a path between disinfection sites

TABLE I
COMPARISON WITH BASELINES AND ABLATION STUDY

Method mAP mAP FPS FPS
0.5:0.95 @0.5 TensorRT

YOLOv8s (baseline) 0.457 0.689 28.16 95.23
YOLOv8s-CBAM 0.492 0.722 27.77 96.15
YOLOv8s-C3Ghost 0.435 0.681 32.67 98.03
YOLOv8s-CBAM-C3Ghost 0.483 0.716 29.12 97.26
YOLOv8m 0.504 0.732 27.0 72.3
YOLOv8m-CBAM 0.512 0.740 24.69 74.07
YOLOv8m-C3Ghost 0.453 0.718 27.02 72.46
YOLOv8m-CBAM-C3Ghost 0.465 0.706 21.97 78.125
YOLOv8n 0.423 0.676 29.25 153.84
YOLOv8n-CBAM 0.439 0.707 29.23 119.04
YOLOv8n-C3Ghost 0.402 0.638 26.45 117.35
YOLOv8n-CBAM-C3Ghost 0.405 0.647 24.21 116.27

with bezier interpolation in advance. Additionally, we set
pedestrians along the path, who are traveling in front of the
robot slowly, face-to-face encountering with the robot, or
crossing in front of the robot with a randomized traveling
velocity. Next, we use SA-APF and APF planners to navigate
the robot moving to the aimed disinfection site in real-time
70 times, respectively, recording the time cost and whether
collision happens or not. Besides, we also list important
parameters in the SA-APF algorithm and find out their
optimal values by grid searching.

C. Evaluation Metrics

In this paper, we choose mean average precision
(mAP),inference speed as the evaluation indices for visual
recognition module. For navigation module, we use arrival
time (the time for the robot to travel from the start point to
the end point) and collision rate(the number of turns when
collision happens among all turns) as the evaluation indices.

VI. RESULTS AND ANALYSIS

A. Results of Vision Recognition

The comparison and ablation results are listed in Table I.
In comparison to the baseline yolov8s model, our yolov8s-
CBAM-C3Ghost model demonstrates a 1.6% increase in
frames per second (FPS) by incorporating the attention and
lightening modules, along with an additional 2.9% FPS im-
provement when utilizing TensorRT. Moreover, our method
exhibits a enhancement of 2.7% in mAP@0.5 accuracy and
a 2.6% improvement in mAP 0.5:0.95 over the baseline,
highlighting the effectiveness of our approach.

Next, we test the model with the addition of CBAM
alone, and the mAP@0.5 improved by 3.3% from baseline.
The ablated model with the C3Ghost module alone revealed
a 0.8% decrease in mAP@0.5, which suggests that the
attention mechanism contributes to the improved accuracy,
while the lightweight module decreases accuracy; when
combined, they are able to have performance with lower
model parameters as well as improved accuracy.

B. Results of Dynamic Pedestrian Avoidance

As shown in Fig. 6, the path produced by the global path
planner is effective in avoiding complex static obstacles. The
robot encounters three different types of pedestrians when
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Fig. 6. Qualitative result of navigation and pedestrian avoidance. The global
planner path and local planner path are observed in blue and red colored
lines, and pedestrians are divided into three categories: (1) slow pedestrian
in front; (2) intersect-with pedestrian; (3) face-to-face-with pedestrian.

TABLE II
COMPARISON BETWEEN OUR SA-APF AND TRADITIONAL APF

Methods Arrival Time Collision Rate
SA-APF 92.6sec 10%

Traditional APF 96.1sec 24.3%
p Value 0.029 0.044

traveling. It can be observed that deviations are made to avoid
them, but when the risk of collision is removed, the robot
returns to the global path.

Table II shows the quantitative comparison between our
algorithm and the traditional APF. Our algorithm shortens
arrival time by 3.6% with p value 0.029 by Independent
Samples t test. In addition, it reduces collision rate by 58.3%
with p value 0.044 by chi-squared test. The result shows
our SA-APF is significantly safer and more efficient than
traditional APF.

As mentioned in Section IV, the APF model is related to
hyper-parameters, including α, β, and predictT ime. So we
will discuss how to choose these hyper-parameters next. We
define hyper-parameters and optimization ranges as below.
According to (7), α ∈ [0, 1] is the proportion of the last
pedestrian velocity state in the prediction of the current
velocity state. According to (8), β ∈ (0, 1] is the ratio of
the short axis to the long axis of the pedestrian potential
field. According to (9), predictT ime is the prediction time
of pedestrians. The larger the value of predictT ime, the
farther away the centers of the potential fields formed by
pedestrians are from them. We use a grid-searching method
to optimize hyper-parameters. We divide the value range of
hyper-parameters into multiple discrete values and repeat
experiments 10 times on each value candidate of each
parameter, as illustrated in Fig. 7. As α increases, arrival
time and collision rate (or called collision time) first surge
and then stabilize. We infer that α is reasonable in the range
of 0.6 to 1, which means the pedestrian motion model can
be approximately simplified to a uniform-velocity model. As
for β, arrival time and collision rate are lowest when β
is 0.9, which means the potential field of a proper ellipse

Fig. 7. Quantitative result of navigation and pedestrian avoidance deter-
mined by different hyper-parameters.

can result in shorter paths and fewer collision times than
traditional round field. As for predictT ime, the optimal
value is between 2.5 and 3.0, which means a proper offset
amount of center point position can improve navigation
efficiency and safety.

C. Results of Real-World Experiment

We test the robot to perform a sterilization task through
a real-world experiment. The experiment is conducted in a
20m×15m corridor, in which there are 13 door handles and 9
switches, as well as 3 pedestrians traveling at different speeds
and directions. The disinfection process is as follows: first,
the robot scans the entire corridor to create a map. Then, we
set up disinfection sites on the map and the robot reaches
these sites in order. At Every site, the robot identifies high-
touch areas and disinfects them.

In the experiment, our robot can successfully disinfect all
the handles and switches, and disinfect only these areas,
which means it is more efficient and cost-effective than
existing disinfection robots. In addition, it takes active and
flexible avoidance when encountering pedestrians, showing
more socially friendly than existing disinfection robots.

VII. CONCLUSIONS

There is an increasing need for autonomous disinfection
of densely populated indoor spaces. However, the majority
of existing disinfection robots spray disinfectant everywhere
evenly and are still immature to maneuver through congested,
dynamic environments. Therefore, in this study, we build a
new robotic system for disinfection to solve the mentioned
challenges. We first propose a vision-based approach for pre-
cisely identifying high-touch locations in the environment,
allowing the disinfection robot to achieve improved disin-
fection efficiency and reduce disinfection cost. Additionally,
we propose SA-APF, a dynamic socially aware algorithm
for pedestrian avoidance, which can anticipate pedestrian
movement trends and avoid collisions with pedestrians more
flexibly. However, there are still some unresolved issues in
this work: in terms of visual recognition, the pedestrian’s
motion has a certain degree of uncertainty and the recog-
nition rate on edge computing devices should be improved.
In terms of navigation and obstacle avoidance, we have not
considered humans’ active avoidance of robots, which is
also important in human-robot interaction. Although there
are still problems to be solved, our work proposes a more
automated and intelligent disinfection process, contributing
to safeguarding public health in the post-pandemic era.
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