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ABSTRACT14

Osteochondrodysplasia, affecting 2-3% of newborns globally, is a group of bone and cartilage disorders that often result in
head malformations, contributing to childhood morbidity and reduced quality of life. Current research on this disease using
mouse models faces challenges since it involves accurately segmenting (precisely delineating) the developing cartilage in 3D
micro-CT images of embryonic mice. Tackling this segmentation task with deep learning (DL) methods is laborious due to the
big burden of manual image annotation, expensive due to the high acquisition costs of 3D micro-CT images, and difficult due to
embryonic cartilage’s complex and rapidly changing shapes. While DL approaches have been proposed to automate cartilage
segmentation, most such models have limited accuracy and generalizability, especially across data from different embryonic
age groups. To address these limitations, we propose novel DL methods that can be adopted by any DL architectures –
including Convolutional Neural Networks (CNNs), Transformers, or hybrid models – which effectively leverage age and spatial
information to enhance model performance. Specifically, we propose two new mechanisms, one conditioned on discrete age
categories and the other on continuous image crop locations, to enable an accurate representation of cartilage shape changes
across ages and local shape details throughout the cranial region. Extensive experiments on multi-age cartilage segmentation
datasets show significant and consistent performance improvements when integrating our conditional modules into popular DL
segmentation architectures. On average, we achieve a 1.7% Dice score increase with minimal computational overhead and a
7.5% improvement on unseen data. These results highlight the potential of our approach for developing robust, universal
models capable of handling diverse datasets with limited annotated data, a key challenge in DL-based medical image analysis.
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Introduction16

Osteochondrodysplasia is a clinically heterogeneous group of more than 100 genetic disorders causing developmental defects17

in connective tissues, including cartilage and bones. The World Health Organization estimated that 2-3% of human newborns18

are affected by such birth defects1. A particularly concerning aspect of osteochondrodysplasia is its association with cranial19

dysmorphology where malformations of the chondrocranium may lead to morphological defects in the bony skull during20

embryogenesis. The chondrocranium is the cartilaginous structure that encases and protects the developing brain and sense21

organs, providing initial support during embryogenesis2, 3. Development of the chondrocranium and Meckel’s cartilage of the22

lower jaw, which precedes the formation of the dentary bone, plays a crucial role in normal craniofacial development. Given23

that embryonic cartilage growth is a highly complex and tightly regulated process, any disruption can lead to severe phenotypic24

abnormalities. Recent studies3–5 tackled the challenge of accurate delineation and segmentation of cartilaginous structures of the25

head to better understand the underlying mechanisms of abnormal development and potentially reveal new therapeutic targets.26

Due to the invasive nature of these studies, cross-sectional techniques using contrast-enhanced micro-computed tomography27

(micro-CT) imaging of embryonic mouse models of human conditions are favored for visualization of embryonic cartilage28

development. However, extracting precise cartilage regions in these large three-dimensional (3D) images is difficult due to the29

fast-changing cartilage morphology during early development and the prohibitive costs of expert annotation.30



Recently, many works have adopted deep neural networks to automate bone and cartilage segmentation with data-driven31

approaches. Most such works focus on bone and cartilage segmentation in the knee6–11 or hip12 region from magnetic resonance32

images. However, the study of embryonic cartilage segmentation in 3D micro-CT images remains limited. Three main33

challenges hamper large data-driven studies on this task. First, micro-CT per specimen is expensive, time-consuming to capture,34

and thus limited in number. Second, labeling the cartilage in 3D images is costly, laborious, and requires expert anatomists.35

Third, cartilage presents sizable morphological and geometric diversity during embryonic development, making them difficult36

to model. An example of morphological variations in mouse cartilage structures across embryonic (E) ages is illustrated in37

Figure 1-(A)13, where one can see discontinuous and porous cartilage structures, ambiguous cartilage boundaries, and large38

variations in structure thickness. Previous works on embryonic-stage cartilage segmentation often did not use multi-age data5, 14,39

while the ones that utilized multi-age data (e.g., Blumer et al.15) did not adopt data-driven approaches and relied on staining40

to delineate cartilage structures. Another common strategy to address structure variations involves training a separate model41

for each age group2, 3, 13. However, this approach requires larger datasets, intensive annotation efforts by experts, and higher42

computation costs. Also, models trained on one age group may overfit the data segment on which it was trained; Figure 1-(B)-ii43

illustrates this scenario where a DL-based segmentation model, Res2Unet*, was trained on data from age group E16.5 (meaning44

16.5 embryonic days after fertilization) and performs poorly when used for prediction on earlier ages such as E13.5 and E14.5.45

Alternatively, a single model trained on a combined multi-age dataset, or joint training, would result in a reduction of46

annotation and training efforts, along with increased performance due to the advantage of an expanded training set that leverages47

structural similarities across ages. Figure 1-(B)-v illustrates this observation where a Res2Unet* is trained jointly on all 448

ages, is then applied to multi-age test sets, and achieves better performances. However, naively combining multiple ages into a49

single dataset does not adequately exploit the large structural variances across ages and the subtle shape variations across scans.50

Jointly trained models are often biased toward the structural characteristics of one age group over another. For instance, they51

often under-segment the structures for later ages or over-segment the structures at earlier ages4 (see Figure 1-(B)-iv which52

shows poor performance on earlier age groups when trained on older ages).
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Figure 1. (A) Visualizing the morphological variations in mouse cartilage across four embryonic ages measured as days after
fertilization. (B) The performance of Res2Unet*, a popular deep neural network model for segmentation, on a multi-age
cartilage dataset (C57), using different ages for training.

53

To better capture both local cartilage details and global variations across ages, we aim to leverage age and spatial information54

that is freely available in our multi-age 3D dataset. Our main idea is to inject this information at various pertinent points in the55

segmentation model to enrich image features and ultimately improve cartilage segmentation. To achieve this, we introduce56

feature enrichment modules that are conditioned on discrete ages (e.g., E13.5, E14.5, E15.5, or E16.5) and on continuous57

spatial information (e.g., encoding the position of each crop with respect to the whole 3D image) to distill helpful contextual58

information beyond what is present in the input images. This concept of incorporating non-visual information has previously59

been explored in medical image analysis. For instance, several works16–18 leveraged the Transformer architecture19, 20 by60

feeding non-visual information as a learnable token to represent discrete categories or converting the information to spatial61

embeddings to be combined with input tokens. Similar to our approach, ConUNETR4 previously tackled embryonic cartilage62

segmentation using “Age" tokens to distill information on structural similarities and disentangle dissimilarities across embryonic63

ages. This model exhibited state-of-the-art performance and improved generalizability than naively joint training schemes.64

However, ConUNETR still poses disadvantages by adopting a data-hungry encoder in a task that often involves sparse annotated65

data availability (as shown in Table 1) by using the Transformer architecture.66
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In this paper, we propose a novel architecture-agnostic strategy that any DL segmentation models can adopt to jointly67

train on multi-age cartilage datasets. Our strategy is based on new modules inserted at multiple points in the segmentation68

model, which enrich features by distilling information from discrete age categories and continuous spatial information. The69

segmentation models built using these modules — UniCoN (for Universal Conditional Networks) — work very well in sparse70

annotation settings and incur minimal computational overhead. We demonstrate the effectiveness of our approach on multi-age71

cartilage segmentation datasets, resulting in notable and consistent performance gains when integrating our conditional modules72

into six popular DL segmentation architectures. On average, we achieve 1.7% Dice score improvements compared to the73

original architecture performances and a 7.5% Dice score improvement when applying our approach to unseen data.74

Our main contributions are as follows: (1) We introduce a novel universal conditioning strategy based on age segments75

that are compatible with any DL segmentation architectures (e.g., CNNs, Transformers, hybrid); (2) we judiciously design76

the new conditional modules to augment model features using rich prior information with small computational overhead; (3)77

we achieve state-of-the-art performance in extensive experiments on a challenging cartilage segmentation dataset with four78

age groups, significantly outperforming ConUNETR4 despite using significantly sparser annotated data; (4) we demonstrate79

superior zero-shot transfer performance on unseen data.80

Methods81

Our main idea is to leverage joint training, or training on combined data from multiple embryonic ages simultaneously, to capture82

shared cartilage structure characteristics while introducing new conditional components to improve the model representation of83

structure differences. These conditional components incorporate discrete age and continuous spatial information to enhance84

the representational power of any base segmentation model. We adopt U-Net21-shaped models – the most popular and85

performant model structure for segmentation – which consist of encoders (CNN, Transformer, or Hybrid), decoders (CNN),86

and skip connections between the encoder and decoder. However, since we add our conditional components at the bottleneck87

and various decoder stages (see Figure 2), our design is architecture-agnostic and can be seamlessly integrated with CNN-88

based, Transformer-based, or other hybrid segmentation backbones. We call these segmentation models UniCoN (Universal89

Conditional Networks).90
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Figure 2. An overview of our proposed UniCoN. Conditional modules added to U-Net-shaped segmentation models:
Conditional self-attention (ConSA) is placed at the bottleneck, and hierarchical dense spatial coordinates (HDSCs) are added to
the decoder blocks. The flexibility of this design allows our approach to be architecture-agnostic.

Our conditional components consist of two modules: (1) a conditional self-attention (ConSA) module that contains a self-91

attention mechanism that conditions on age and crop-level spatial information, and (2) a hierarchical dense spatial coordinates92

(HDSC) concatenation that is attached to the decoder blocks at multiple scales and concatenates dense spatial information in a93

channel-wise manner to multi-scale features obtained from the encoder. Empirically, we found that adding a single ConSA to94

the encoder’s lower resolution outputs and adding HDSCs to each decoder block’s input immediately after the encoder skip95

connections performed the best. The following subsections will describe these components.96

Conditioned Self-Attention97

Inspired by ConUNETR4, we introduce the conditioned self-attention (ConSA) module to better distill age-specific cartilage98

structure information during the feature encoding process. Unlike ConUNETR which introduced age tokens at the beginning99

of the encoder layers, our ConSA uses age information and additionally spatial features corresponding to image features, at100

the lowest resolution output of the encoder stage. This design improves model performance in sparse annotated data settings101

as we are decoupling the encoder’s feature learning process from the incorporation of critical non-visual information. In the102

segmentation pipeline, incorporating critical non-visual information (age and spatial information) after learning image features103

enhances the segmentation model’s contextual awareness without adding model complexity to the feature learning process104
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which risks overfitting. As a result, ConSA can output age-relevant and spatially-aware image features conditioned on both the105

respective age group of the samples and their spatial context, improving multi-age segmentation performance.106
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Figure 3. (A) Obtaining age and location vectors from an input image. (B) Obtaining image features conditioned on age and
spatial information by applying the conditioned self-attention (ConSA) layer to the image features outputted at the end of the
encoder stage.

Figure 3-(A) illustrates the conditioning process and how age and spatial information features are obtained and encoded107

from an input image. Given a zth image slice sz of dimension H ×W from a volume (with totally Z slices) belonging to the108

age group Ai, where Ai ∈ {0,1,2,3} such that {0: E13.5, 1: E14.5, 2: E15.5, 3: E16.5}, we crop an h×w region in sz with109

randomly selected top (t), bottom (b), left (l), and right (r) locations. Next, we obtain the relative central coordinates (x∗,y∗,z∗)110

of sz, as follows:111

x∗ =
l + r

2×W
, y∗ =

t +b
2×H

, z∗ =
z
Z
. (1)

The age index of the input image and the relative central coordinates (x∗,y∗,z∗) are mapped using two separate multilayer112

perceptions (MLPs) to obtain the age vector and location vector, both of dimension hid_dim, as:113

Age Vector = MLPag(Ai), Location Vector = MLPsp(x∗,y∗,z∗). (2)

The image crop is fed into the encoder of the segmentation model, and the lowest-resolution image features obtained at the114

end of the encoding stage are passed through the ConSA layer as shown in Figure 3-(B). For a given c×h×w (channel ×115

height × width) shaped features outputted by the encoder, we apply a 1×1 convolution block to obtain a hid_dim×h×w116

shaped features and flatten them to (h ·w)×hid_dim, where hid_dim corresponds to the dimension of the embedding that is117

used for each token. We concatenate the age vector and location vector at the top of the flattened image features. Next, a118

multi-headed self-attention processes the features, age and location vectors. The output features now contain embedded age and119

location information within each patch token. The patch tokens – not including the Age Vector and Location Vector – are then120

reshaped to hid_dim×h×w and passed through a 1×1 convolution block to obtain the enriched image features of the shape121

c×h×w.122

Hierarchical Dense Spatial Coordinates (HDSC) Concatenation123

To provide the model with additional spatial context of the input image crops and achieve more accurate segmentations,124

we propose a new module, hierarchical dense spatial coordinates (HDSC), which hierarchically concatenates dense spatial125

information to the image features at different decoder stages. Inspired by CoordConv22, we extend this idea by incorporating126

depth information and hierarchically applying it across each decoder stage to add relative spatial information. HDSC enhances127

the spatial precision of convolution-based decoders, allowing for improved spatial awareness and better localization due to the128

explicit use of spatial information. This results in sharper boundaries and more accurate structures, especially when segmenting129

complex or irregular structures, and helps recover fine-grained spatial details lost during downsampling.130
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Figure 4. Concatenating dense spatial coordinates to the image features at the channel dimension after interpolation to match
the dimension of the image features.

For the zth image slice sz of dimension H ×W from a volume (belonging to the age group Ai) with Z total slices, we crop a131

rectangular region of size h×w with randomly selected top (t), bottom (b), left (l), and right (r) positions. We compute the132

dense coordinates as follows:133
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Relative i-Coords =


l l +1 · · · r−1
l l +1 · · · r−1
...

...
. . .

...
l l +1 · · · r−1


W

, Relative j-Coords =


t t · · · t

t +1 t +1 · · · t +1
...

...
. . .

...
b−1 b−1 · · · b−1


H

, Relative k-Coords =

z · · · z
...

. . .
...

z · · · z


Z

.

At different stages of the decoder, we interpolate the dense coordinates before concatenation to match the spatial dimensions134

of the features while preserving the relative spatial information. We concatenate these interpolated dense coordinates to the135

image features obtained after the skip connections are added (see Figure 4). The dense coordinates are hierarchically added at136

each decoder stage as shown in Figure 2.137

Training the Conditional Segmentation Model138

We train the segmentation model on a sparse set of 2D slices which contain annotations (<3% of annotated slices in a volume)
using a combination of the Dice and Cross-Entropy losses. The Dice Loss (LDice) is computed as:

LDice = 1− 2∑i pigi

∑i p2
i +∑i g2

i
,

where pi represents the predicted probability for the i-th pixel (or voxel), gi represents the ground truth label for the i-th pixel
(with a value of 0 or 1), and the summation is performed over all pixels in the segmentation map. The Dice Loss effectively
measures the overlap between the predicted and true masks, where a value of 0 indicates perfect overlap. The Cross-Entropy
Loss (LCE) is computed as:

LCE =−∑
i

gi log(pi),

where gi is the ground truth label for the i-th pixel (encoded as 0 or 1), and pi is the predicted probability for the i-th pixel139

belonging to the target class. The Cross-Entropy Loss penalizes incorrect classifications, encouraging the model to produce140

probabilities closer to the true labels. Thus, our overall segmentation loss LSegmentation is taken as:141

LSegmentation = α ·LDice +(1−α) ·LCE, (3)

where the parameter α controls the weight of the combination. We observed that for our dataset, equal weight for both the142

losses (i.e., α = 0.5) performs the best.143

Data Acquisition and Implementation Details144

We use a multi-age cartilage dataset from the C57BL/6J mouse model. This inbred mouse strain (C57) features prominently145

in research modeling of typical physiological (non–pathological) conditions including skeletal health, growth, and develop-146

ment23–25. The embryonic cartilaginous cranial skeleton in the C57 mouse begins to develop prior to the appearance of bone147

during embryogenesis and then either undergoes endochondral ossification26, disintegrates, or remains and grows in shape148

and size, causing morphological variations across embryonic ages. Thus, we adopt C57 as our main data cohort due to the149

challenging and quick-changing cartilage and bone structures during development.150

Dataset Details151

C57 mice were bred at both the Icahn School of Medicine at Mount Sinai and The Pennsylvania State University (PSU) via152

timed mating. Specimen production and collection took place under appropriate IACUC protocols at the specified institutions.153

Following the euthanasia of the pregnant dam, embryos were collected into cold phosphate-buffered saline (PBS) on the ice154

at the desired stage of embryonic development: embryonic (E) days E13.5, E14.5, E15.5, and E16.5. Mice litters aged less155

than E16 were staged using the eMOSS system1027 to determine whether they were within ∼6 hours of the expected age. All156

embryonic mouse specimens were stained in a 7.0% solution of phosphotungstic acid (PTA) in 90% methanol according to157

time-modified protocols25 to enhance tissue contrast during subsequent microCT scanning. PTA-enhanced microCT specimens158

were obtained at the PSU Center for Quantitative Imaging utilizing the General Electric v| tome| L300 nano/microCT system.159

The resulting raw image data were reconstructed as 32-bit and subsequently reduced to 16-bit unsigned integers before being160

cropped, reoriented into the coronal or transverse anatomical planes, and LUT-adjusted to obtain the 3D volumes.161

Using a previously proposed slice selection scheme28, representative 2D slices from C57 volumes were selected for162

maximum coverage within the volumes for manual cartilage annotations by experts. With their generous effort, we were able163

to obtain four partially annotated volumes for each of the four C57 ages: E13.5, E14.5, E15.5, and E16.5. Each volume has164

roughly 1600 2D slices on average with dimensions of about 1000 (height) × 1500 (width) pixels. Within all the volumes,165
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40-45 2D slices (2.6% of the total slices) were hand-annotated. We divided the training set into two volumes for each of the166

four age groups, totaling 8 volumes and 320 hand-annotated 2D slices. Similarly, the test set consisted of two volumes per age167

group, a total of 8 volumes, and roughly 340 total hand-annotated 2D slices. We also used four volumes from mice with genetic168

mutations known to affect craniofacial phenotype – denoted as Mutation A (E13.5), Mutation B (E15.5), and Mutation C169

(E14.5, E16.5)3 – to study the generalizability of the conditionally trained models. We have in total four volumes (∼1300 slices170

per volume) out of which 201 slices were hand-annotated for cartilage segmentations and used for testing model performance171

on these 3 additional mutations.172

Implementation Details173

We demonstrate the effectiveness of our proposed components using six base segmentation models: three Transformer-based174

models, two Convolutional Neural Network (CNN)-based models, and one CNN-Transformer hybrid model. All 6 models175

use CNN-based decoders with skip connections from the encoder to the decoder. Except for our modified Res2Unet model176

(Res2Unet*), all the other models adhere to their original implementation details as described in the respective papers. Our177

Res2Unet* differs from the existing implementations29, 30 by integrating encoder and decoder features using pixel-wise178

summation, rather than concatenation, at the skip connections. Each of the six models is fine-tuned for optimal configurations179

(width, depth, number of blocks, etc.) on our dataset. ConSA maintains a hidden dimension hid_dim of 64, utilizing 4 attention180

heads. The conditional vectors, which represent age and location, also are retained as 64-dimensional vectors. To reduce the181

risk of overfitting, we apply random jittering to the central coordinates used for the location vector by sampling uniformly in182

the range [0, 0.2]. The models are implemented using PyTorch and MONAI . We train them from scratch for 700 epochs using183

automatic mixed precision31 on an NVIDIA A10 GPU and optimized using AdamW32 with a Cosine Annealing learning rate184

scheduler33. We also apply standard regularization methods, including a 10% dropout34 and a weight decay of 0.00132. The185

images are randomly cropped to 256×256 (height × width), and a non-linear Bézier curve intensity transformation35 is applied186

along with random rotation, and mirroring across all the three axes.187

Experiments and Results188

Figure 1-(B) shows that joint training generally improves performance compared to training the models on individual ages.189

However, due to intra-age and inter-age morphological variations, not all ages benefit equally from joint training. In this section,190

we show how our proposed components help segmentation models handle these variations and improve upon the base model191

results.192

Joint Training with Conditional Components on Different DL Architectures193

Model Parameters
Trained on All Four C57 Ages

E13.5 E14.5 E15.5 E16.5 Avg.

Transformer Models

UNETR36 14.96 M 53.2 ±2.0 63.2 ±2.2 75.2 ±2.5 82.2 ±1.3 68.5

UNETR36 + ConSA + HDSC 15.03 M 56.8 ±1.6 66.2 ±2.2 77.6 ±2.1 83.5 ±0.4 71.0 ↑2.5

ConUNETR4 14.96 M 55.6 ±1.2 65.3 ±0.2 77.1 ±0.5 83.9 ±0.6 70.5

ConUNETR4 + ConSA + HDSC 15.03 M 58.5 ±0.3 67.6 ±0.6 78.4 ±0.8 84.9 ±0.5 72.3 ↑1.8

SwinUNETR v237 7.08 M 60.0 ±1.6 74.0 ±1.1 86.5 ±0.5 88.6 ±0.5 77.3

SwinUNETR v237 + ConSA + HDSC 7.16 M 62.3 ±2.4 75.5 ±1.4 87.2 ±0.6 90.1 ±0.8 78.8 ↑1.5

CNN or Hybrid Models

U-Net21 7.94 M 61.7 ±2.0 76.4 ±0.5 84.9 ±0.8 90.8 ±0.3 78.5

U-Net21 + ConSA + HDSC 8.04 M 65.6 ±0.7 78.1 ±0.9 86.8 ±0.6 91.5 ±0.2 80.5 ↑2.0

UNeXt38 1.47 M 61.9 ±0.4 77.7 ±0.3 85.3 ±0.5 90.5 ±0.4 78.9

UNeXt38 + ConSA + HDSC 1.53 M 63.7 ±1.4 77.6 ±0.9 84.9 ±1.5 91.7 ±0.1 79.5 ↑0.6

Res2UNet* 15.60 M 65.4 ±1.1 78.7 ±0.2 87.6 ±0.6 91.8 ±0.1 80.9

Res2UNet* + ConSA + HDSC 15.88 M 67.2 ±0.5 81.2 ±0.3 88.2 ±0.3 92.3 ±0.1 82.2 ↑1.3

Table 1. Segmentation performances (Dice Score) of various DL architectures, both with and without our proposed
conditional components. All the models are trained on the combined training set consisting of four different ages from the C57
dataset (joint training) and evaluated on the multi-age C57 test sets.

For this study, we combine the training data from all four age groups in the C57 dataset, and evaluate the models on the194

corresponding test set of each age (see Table 1). In the Transformer-based architectures, our proposed components yield at least195
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a 2.3% Dice improvement on the earliest age (E13.5) and at least a 1.0% Dice score improvement on the most developed age196

(E16.5). On average, these components contribute to at least a 1.5% improvement across all the ages for Transformer-based197

models. Similarly, when applied to CNN-based architectures, our components deliver more than a 1.8% improvement on the198

earliest age and a 0.5% improvement on the most developed age, with an average improvement of 1.3% across all the ages.199

The hybrid model UNeXt38, which employs CNN-based encoders and decoders while using a tokenized multilayer perceptron200

(MLP) to introduce Transformer-like effects at the bottleneck, also experiences an average improvement of at least 0.6% when201

enhanced with our components. Thus, with our proposed conditional training components, all the models experience notable202

performance gains by effectively handling the structural variations in multi-age cartilage data while simultaneously leveraging203

the underlying similarities across the ages.204

Zero-shot Transfer205

We use three distinct mutations (Mut A, Mut B, and Mut C) that are unseen during training to evaluate how well the conditional206

models generalize in a zero-shot transfer scenario (i.e., without training but only testing on the new data). Since the models207

were trained on cranial and post-cranial regions in the C57 dataset, we extracted only those regions from the volumes of the new208

mutations for testing. The models jointly trained across all the ages of the C57 dataset are directly applied to one volume from209

each of the four known ages across the three unseen mutations. In Table 2, we show the results of the best-performing CNN-210

and Transformer-based models. The models incorporating our conditional components demonstrate superior generalizability211

compared to their base versions without the added components. We achieve an average improvement of 7.6% Dice on the212

Transformer-based model and 7.3% on the CNN-based model, drastically improving the generalizability of our networks with213

minimal computational overhead.214

Model
Trained on All Four C57 Ages

Mut A E13.5 Mut B E14.5 Mut C E15.5 Mut B E16.5 Avg.

SwinUNETR v2 50.4 71.9 67.1 72.6 65.5

SwinUNETR v2 + ConSA + HDSC 56.9 ↑6.5 78.1 ↑6.2 76.3 ↑9.2 80.9 ↑8.3 73.1 ↑7.6

Res2UNet* 48.5 69.5 60.6 70.8 62.4

Res2UNet* + ConSA + HDSC 53.7 ↑5.2 76.8 ↑7.3 68.2 ↑7.6 79.9 ↑9.1 69.7 ↑7.3

Table 2. Results of zero-shot transfer (i.e., performing inference on new data without fine-tuning) on unseen datasets. All the
models are trained on the combined training set of the four ages of the C57 dataset (joint training) and applied to the test set
volumes belonging to four ages of three different mutations (Mut A, Mut B, and Mut C).

Components and Ablation Study215

We study the optimal configurations of the proposed conditional components and their significance within the overall conditional216

segmentation model. For this study, we select the best-performing CNN-based model (Res2Unet*) and Transformer-based217

model (SwinUNETR v2). These models are jointly trained on the C57 dataset and applied to the multi-age C57 test set. We218

compare the model performances trained with and without the conditional components.219

Components
Trained on All Four C57 Ages

Res2Unet* SwinUNETR v2

Base Model 80.9 77.3

+ FM (age) 79.4 ↓1.5 75.3 ↓2.0

+ ConSA (age) 81.7 ↑0.8 78.2 ↑0.9

+ FM (age+loc) 77.8 ↓3.1 75.8 ↓1.5

+ ConSA (age+loc) 81.8 ↑0.9 78.1 ↑0.8

+ HDSCencoder 80.5 ↓0.4 -

+ HDSCencoder+decoder 80.6 ↓0.3 -

+ HDSCdecoder 81.6 ↑0.7 77.8 ↑0.5

Dec
od

er

+ Con
SA

(A
ge

)

+ Con
SA

(L
oc

)

+ HDSC
Res2Unet* SwinUNETR v2

Earl
y Age

s

Late
r Age

s

Earl
y Age

s

Late
r Age

s

✓ 72.1 89.7 67.0 87.5

✓ ✓ 73.0 90.3 68.0 88.3

✓ ✓ ✓ 73.5 90.0 68.6 87.6

✓ ✓ ✓ ✓ 74.0 90.1 68.5 87.9

✓ ✓ ✓ 74.2 90.3 68.9 88.7

Table 3. Left: Comparison of different components and their configurations. Right: The ablation study shows the benefits of
different components when they are used. All the models are trained on the combined training set of four ages of the C57
dataset (joint training) and applied to the multi-age C57 test sets.

Feature Modulation220

In the literature, feature modulation (FM) may be considered as an alternative to conditional self-attention. Thus, we study221

feature modulation conditioned on age and spatial information following the widely-used Feature-wise Linear Modulation222
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Expert’s Manual 
Segmentations

Res2Unet*
(Base Model)

Res2Unet*
+ConSA+HDSC

(Our Conditionally 
Trained Model )

C57 E13.5 C57 E14.5 C57 E15.5 C57 E16.5

i ii                                 iii                          iv                                v     vi                               vii                         viii  

Figure 5. Visual examples of segmentation results (joint trained on the C57 multi-age training set and applied to the C57
multi-age test set) obtained by the Res2Unet* model (top row), Res2Unet* + ConSA + HDSC (middle row), and expert’s
manual segmentations = ground truth (bottom row). Red arrows indicate poorly segmented or “noisy” output, while green
arrows point to expected or well-segmented regions.

(FiLM) method39. The implementation details can be found in the Supplementary Material. In the two blocks below “Base223

Model” in Table 3-Left, we compare the performances of the feature modulation and conditional self-attention layers. Feature224

modulation yields less favorable results than the base model. Despite the morphological differences in the multi-age dataset,225

these variations may not provide sufficiently strong learning signals for modulated features to accurately capture the structural226

differences. In comparison, the soft feature modulation attained through conditional self-attention is more effective in the sparse227

annotated data setting of our multi-age cartilage dataset.228

Spatial Information in Different Stages of CNN Encoders and Decoders229

We investigate the optimal placement of our HDSC in the segmentation network. Note that for Transformer-based encoders, we230

exclude HDSC from the study, as the spatial embeddings in such an encoder architecture already capture positional relationships231

between tokens, making the addition of HDSC redundant. However, since state-of-the-art segmentation models typically232

employ CNN-based decoders, regardless of their encoder type, we focus our effort on enhancing spatial awareness in the233

decoder by integrating HDSC into it. As shown in the last block of Table 3-Left, placing HDSC in the encoder or in both the234

encoder and decoder leads to worse performance than the base model. However, placing HDSC in the CNN-based decoder235

blocks results in up to a 0.7% improvement compared to the base model. Adding spatial information in the encoder can hinder236

learning in sparse annotated data settings by possibly causing the model to overfit to specific spatial cues, rather than focusing237

on general and robust features. In contrast, introducing spatial information in the decoder helps the model better localize and238

refine object boundaries, and improves segmentation precision by enhancing the high-level features and making them more239

effective in scarce annotated data scenarios.240

Ablation Study241

Table 3-Right presents the segmentation performances with various components in combination. The results are obtained242

by training the models on all four C57 ages and evaluating on the corresponding C57 test set. Average Dice scores for the243

early ages (E13.5 + E14.5) and later ages (E15.5 + E16.5) are reported for both the best-performing CNN- (Res2UNet*) and244

Transformer-based (SwinUNETR v2) models. Incrementally adding the proposed components improves performance for both245

the CNN and Transformer models across both the early and later age groups. Notably, for the later ages, location information246

during ConSA is less critical, as HDSC alone can capture the necessary spatial information due to the more developed cartilage247

structures in these ages. The best results are achieved by combining ConSA and HDSC, leading to performance gains of up to248

2.1% for the early ages and up to 1.2% for the later ages while adding merely at most 0.3 million parameters.249

Discussion250

From an anatomical perspective, our conditional components considerably enhance the segmentation accuracy in several251

aspects. Figure 5 presents some visual segmentation examples of the Res2UNet* models jointly trained on all four age groups252

of the C57 dataset and applied to the C57 multi-age test set. The conditionally trained Res2UNet* model (Res2Unet* + ConSA253

+ HDSC) shows noticeable improvements compared to its base version, generating segmentations with fewer background254
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Figure 6. Comparison of segmentation results (Dice scores) using individually trained models versus joint training with our
proposed conditional components. Left: The Res2Unet* model. Right: The SwinUNETR v2 model. The models are trained
using the C57 multi-age training set and applied to the C57 multi-age test set.

artifacts, better structural consistency, and improved recognition of the anatomical details of the target cartilage. For the earliest255

age group (E13.5), the base model (Res2Unet*) fails to fully capture the circular shape of the nasal capsule (the first row256

of Figure 5-i) and is unable to segment the thin superior portion of the lateral walls of the chondrocranium (the first row of257

Figure 5-ii). In contrast, the conditionally trained model better captures the true morphology of these tissues, preserving not258

only the shape but also the continuity of the structure (the second row of Figure 5-i and -ii) and closely mimicking the ground259

truth (the third row of Figure 5-i and -ii) for the cartilage segmentation produced by the anatomical expert (hand annotation).260

Similarly, for the age groups E14.5 and E15.5, the segmentations by the conditionally trained model are significantly cleaner,261

with less “noise” (fewer scan artifacts and scattered voxels). The boundaries around the structures are better identified, and262

the unwanted artifacts present in the base model’s segmentations are substantially reduced, resulting in smoother segmented263

surfaces. For E14.5, costal and vertebral cartilages are segmented more accurately, reducing “noise” output (the second row264

of Figure 5-iii) and eliminating over-segmentation (false positives) on the lateral walls of the chondrocranium compared to265

the base model (the second row of Figure 5-iv). Moreover, for the latest age group (E16.5), the segmentation outputs of the266

base model appear fragmented and incomplete (the first row of Figure 5-viii), with some areas showing false positives (the267

first row of Figure 5-vii). In contrast, our model captures these regions with enhanced accuracy, providing a more consistent,268

detailed, and anatomically correct segmentation even for small skeletal elements, such as individual phalanges within the269

extremities of the forelimbs. Likewise, our model fully segments the sternum (the second row of Figure 5-viii) while the base270

model presents fragmented elements that lack sharpness and contain several false negatives (the first row of Figure 5-viii). The271

conditionally trained model distinguishes individual skeletal elements in the extremities, correctly identifying and preserving272

their true morphology as compared to the expert’s manual annotations.273

Figure 6 further reports quantitative improvements of our model over the ones trained on single age groups separately. In274

Figure 6, “Individually Trained" represents results when the models are trained individually on a specific age (e.g., E13.5) and275

are applied to the same age (e.g., E13.5); “Jointly Trained using Conditional Components" refers to the models trained jointly276

on all the C57 ages and applied to all the C57 ages (E13.5, E14.5, E15.5, and E16.5). Compared to the common practices277

of individually training the models on each age group, our proposed idea of joint training on all ages using the conditional278

components with CNN-based (Transformer-based) models yields a 14.2% (10.0%) improvement on the E13.5 age during which279

the cartilage structures are far from fully developed, and 2.1% (4.7%) on the E16.5 age when the cartilage structures are mostly280

developed.281

Conclusions282

In this paper, we addressed the challenges of structural variations in multi-age embryonic cartilage segmentation in 3D283

micro-CT images by exploring conditional modules for DL segmentation models with our new UniCoN approach. Our284

proposed conditional components enabled joint training on multi-age data, reducing annotation and training efforts. These285

proposed encoder-agnostic conditional components are universally compatible with CNN-based, Transformer-based, and hybrid286

CNN-Transformer-based segmentation models with merely a very small increase in model complexity. Several conditional287

configurations, integrating age-specific and spatial information into the decoding process, were evaluated, and the experimental288

results showed that the models trained using our components (e.g., Res2Unet* + ConSA + HDSC) yield considerable Dice289

score improvements across all ages compared to the previous state-of-the-art conditional model, ConUNETR. On unseen data,290

the models trained using our components resulted in 7.5% Dice improvement. These findings pave the way for further research291

into robust, universal segmentation models capable of handling diverse datasets even when limited annotations are available.292
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Data Availability293

The datasets used in this manuscript are partially available for public use, and the dataset details can be found in our previous294

publication 3 through this link.295
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